Ve

HUAWEI

Introduction

PF :
Berkeley Packet Filter : In-kernel Virtual eBPF Map
Machine for packet & syscall filtering

eBPF helpers

Userspace

Kernel

eBPF: extended BPF for filtering, tracing,

In-kernel JIT compilation

. ’ Space
Transport Layer

eBPF Maps: Share data between userspace IP / Routing o
and Kernel space Network Iayer VNF

Enhanced 64 bit register, supports instruction

In

call, load, store, conditional jump Switch /bridge

eBPF programs can be used as hook to drivers

_

MAC/Link Layer | -

J

different layers of the kernel stack 2

bcc : bpf compiler collection
‘ HW / NIC \

XDP :
. XDP: eXpress Data Path under I0Visor project ~ SBFF hook from

Physical
Space

userspace to kernel space

* Programmable, high performance data path at the lowest point of Linux Kernel Software

stack

* Very fast packet processing before allocation of skbuff inside device driver Rx function
 Flow table managed by BPF program which is portable to userspace and other OS
- Aim of XDP is to replace the OVS data path with eXpress Data Path

eBPF Filtering and Test Setup for eXpress
Data Path on Virtual Network Environment ‘“‘

Sabur Hassan Baidya and Yan Chen
Software Network Virtualization Group, Futurewei Technologies, Santa Clara, CA 95050

eBPF Implementation and flows

serspace program (in Python, restricted C)
accesses eBPF helper functions

serspace loads eBPF program

int bpf(BPF PROG LOAD,

union bpf attr *attr,
unsigned int size)

Userspace creates/updates bpf maps, sockets
bpf (BPF MAP CREATE, union

bpf attr *attr, u32 size)
SOCKk = SOCKEt(ee, ooy, o)

BPF Map: key

Attach bpf program to socket value storage of type

setsockopt(socket, SOL SOCKET,

HASH, ARRAY or other

SO_ATTACH BPF, &fd, sizeof(£d)) types

BPF LLVM
backend

Bytecode

Access Map

BPF Bytecode

BPF Maps

Network Virtualization and Test Setup

VM vs Container - Comparison and Coexistence

VM is abstraction of hardware with full hardware stack,
virtualized network adapters, memory and CPU.

- Multiple VMs can be instantiated by a hypervisor running on
the physical host where a separate OS run for each VM.

* In container, abstraction is mostly done at OS level where the
containers share the same Kernel space with the OS but
userspace is abstracted.

SENDER Traffic
Generator

Ubuntu 16.04
ixgbe

(Ceth0 )  Ppkigen

- The main aim of a container is to provide a runtime
environment for applications.

- Containers are lightweight compared to VMs, so many
containers can run on a single machine with less overhead
compared to VMSs.

* In terms of security containers are more vulnerable compared
to VMs.

- VM and containers can be used as complementary to each
other. Containers can run within a VM providing more
iIsolation, enhanced security and easy manage of hardware.

Test Setup:

- Fast L2 forwarding using dpdk application. The sender
generates packet using pktgen and the packets go through
dpdk 12fwd application to the receiver.

- XDP testing for fast packet drop in the iovisor container

- NAT implementation with eBPF, testing over two namespaces

Experiments & Preliminary Results

DPDK I2fwd:
- Connect the traffic generator host with the DPDK host/VM with open switch.

Host machine1

Layer 2
Forward
DPDK

setup

DPDK VM
+

Receiver

Ubuntu 16.04
igb_uio | igb_uio

(port0) (Por“J

Host machine2/ Hypervisor

eXpress Data
Path (XDP)

Hypervisor

DROP
FORWARD
NAT

XDP with eBPF for different control functions

- Install DPDK application on the VM with target as x86_64-native-linuxapp-gcc on ubuntu 16.04

- Setup the device driver virtio or igb_uio and bind the network interfaces

- Allocate huge pages in the system and compile the [2fwd application from dpdk example

- Run the dpdk 12fwd application with command :

# /examples/12fwd/build/12fwd -¢c 1 -n 1 — -g 1 -p

XDP Fast packet drop:

1

- XDP fast packet drop functionality is tested with Mellanox 40 Gbits/s NIC.
- Sender is running hight speed packetgen application on Ubuntu 16.04 with Linux kernel 4.7

- Receiver machine is running a VM where we execute the XDP code for fast packet drop.

- Test the speed of packet drop using ‘nicstat’

« Got ~13 Mbps packet drop speed with our current setup

NAT functionality with eBPF:

* New NAT functionality is implemented with eBPF using BPF Maps with bcc

- The BPF code reads the IP header and maps it to a destination address which the userspace can

see through the BPF map.

- Tested the NAT functionality by creating two namespace containers and NATing from one

namespace to another.

L2 Forwarding with DPDK

- DPDK (Data Plane Development Kit) is utility program

containing data plane libraries and network interface
controller driver for fast packet processing.

- Layer2 forwarding for each received packet
- Memory pools and port queues are needed for 12fwding

« Source port and destination port are paired by port

mask

« Source and destination MAC address of the received

packets are modified to forward to adjacent port.

eBPF experiments

 IOVisor opensource code with eBPF helper functions
 Userspace frontend python program calls BPF system

call wrapper functions

* For XDP fast packet drop, the eBPF hook attaches its

context to the kernel driver and monitors packet
header.

- It drops packets before skbuff allocation
- Source port and destination port are paired by port

mask

* For NAT application, it monitors IP header and perform

NAT as per control mapping introduced by user

Conclusion

Linux kernel.

- As a third party software DPDK needs licensing and special hardware whereas XDP uses tools from

 Dedicated CPUs are not required for XDP; also no huge pages is needed.

- XDP is not a kernel bypass, it is a fast path in the kernel stack accessed by the userspace.
- XDP is very flexible in header parsing and packet rewriting and packet steering.

 Fast packet drop by XDP results are currently constrained by hardware limitations

- The NAT functionality is currently tested with containers which can be extended with VMs.

References

1] https://www.iovisor.org/

2] http://dpdk.org/

SIGCOMM 2016.

3] http://events.linuxfoundation.org/sites/events/files/slides/bpf_collabsummit_2015feb20.pdf

] Z. Ahmed, M. H. Alizai, Affan. A. Syed. "InKeV: In-kernel Distributed Network Virtualization for DCN”, ACM

[5] Fernando Sanchez, Brenden Blanco, “"Extended BPF and Data Plane Extensibility: An overview of Networking

and Linux”, PLUMgrid Inc.

[6] S. Dutt Sharma, “LTTng’s Trace Filtering and Beyond” , TracingSummit (LinuxCon, Seattle), 2015

[7] Yunsong Lu. “Evolving Virtual Networking with IO Visor”, Huawei Technologies Co., Ltd.

printed by WkegaPxrint Inc. Www.postersession.com



http://www.megaprint.com/

