
www.postersession.com

Order online at https://www.postersession.com/order/

eBPF Filtering and Test Setup for eXpress
Data Path on Virtual Network Environment

Sabur Hassan Baidya and Yan Chen
Software Network Virtualization Group, Futurewei Technologies, Santa Clara, CA 95050

BPF :
• Berkeley Packet Filter : In-kernel Virtual

Machine for packet & syscall filtering
• eBPF: extended BPF for filtering, tracing,

networking etc.
• In-kernel JIT compilation
• eBPF Maps: Share data between userspace

and Kernel space
• Enhanced 64 bit register, supports instruction

call, load, store, conditional jump
• eBPF programs can be used as hook to

different layers of the kernel stack
• bcc : bpf compiler collection

• XDP: eXpress Data Path under IOVisor project
• Programmable, high performance data path at the lowest point of Linux Kernel Software

stack
• Very fast packet processing before allocation of skbuff inside device driver Rx function
• Flow table managed by BPF program which is portable to userspace and other OS
• Aim of XDP is to replace the OVS data path with eXpress Data Path

eBPF hook from userspace to kernel space

VM vs Container - Comparison and Coexistence

eBPF Implementation and flowsIntroduction

Network Virtualization and Test Setup

L2 Forwarding with DPDK
• VM is abstraction of hardware with full hardware stack,

virtualized network adapters, memory and CPU.
• Multiple VMs can be instantiated by a hypervisor running on

the physical host where a separate OS run for each VM.
• In container, abstraction is mostly done at OS level where the

containers share the same Kernel space with the OS but
userspace is abstracted.

• The main aim of a container is to provide a runtime
environment for applications.

• Containers are lightweight compared to VMs, so many
containers can run on a single machine with less overhead
compared to VMs.

• In terms of security containers are more vulnerable compared
to VMs.

• VM and containers can be used as complementary to each
other. Containers can run within a VM providing more
isolation, enhanced security and easy manage of hardware.

Test Setup:
• Fast L2 forwarding using dpdk application. The sender

generates packet using pktgen and the packets go through
dpdk l2fwd application to the receiver.

• XDP testing for fast packet drop in the iovisor container
• NAT implementation with eBPF, testing over two namespaces

Experiments & Preliminary Results
DPDK l2fwd:

• Connect the traffic generator host with the DPDK host/VM with open switch.
• Install DPDK application on the VM with target as x86_64-native-linuxapp-gcc on ubuntu 16.04
• Setup the device driver virtio or igb_uio and bind the network interfaces
• Allocate huge pages in the system and compile the l2fwd application from dpdk example
• Run the dpdk l2fwd application with command :

/examples/l2fwd/build/l2fwd -c 1 -n 1 — -q 1 -p 1

XDP Fast packet drop:
• XDP fast packet drop functionality is tested with Mellanox 40 Gbits/s NIC.
• Sender is running hight speed packetgen application on Ubuntu 16.04 with Linux kernel 4.7
• Receiver machine is running a VM where we execute the XDP code for fast packet drop.
• Test the speed of packet drop using ‘nicstat’
• Got ~13 Mbps packet drop speed with our current setup

NAT functionality with eBPF:
• New NAT functionality is implemented with eBPF using BPF Maps with bcc
• The BPF code reads the IP header and maps it to a destination address which the userspace can

see through the BPF map.
• Tested the NAT functionality by creating two namespace containers and NATing from one

namespace to another.

eBPF experiments

Conclusion

References

• DPDK (Data Plane Development Kit) is utility program
containing data plane libraries and network interface
controller driver for fast packet processing.

• Layer2 forwarding for each received packet
• Memory pools and port queues are needed for l2fwding
• Source port and destination port are paired by port

mask
• Source and destination MAC address of the received

packets are modified to forward to adjacent port.

• IOVisor opensource code with eBPF helper functions

• Userspace frontend python program calls BPF system
call wrapper functions

• For XDP fast packet drop, the eBPF hook attaches its
context to the kernel driver and monitors packet
header.

• It drops packets before skbuff allocation

• Source port and destination port are paired by port
mask

• For NAT application, it monitors IP header and perform
NAT as per control mapping introduced by user

XDP :

• As a third party software DPDK needs licensing and special hardware whereas XDP uses tools from
Linux kernel.

• Dedicated CPUs are not required for XDP; also no huge pages is needed.

• XDP is not a kernel bypass, it is a fast path in the kernel stack accessed by the userspace.

• XDP is very flexible in header parsing and packet rewriting and packet steering.

• Fast packet drop by XDP results are currently constrained by hardware limitations

• The NAT functionality is currently tested with containers which can be extended with VMs.

[1] https://www.iovisor.org/

[2] http://dpdk.org/

[3] http://events.linuxfoundation.org/sites/events/files/slides/bpf_collabsummit_2015feb20.pdf

[4] Z. Ahmed, M. H. Alizai, Affan. A. Syed. “InKeV: In-kernel Distributed Network Virtualization for DCN”, ACM
SIGCOMM 2016.

[5] Fernando Sanchez, Brenden Blanco, “Extended BPF and Data Plane Extensibility: An overview of Networking
and Linux”, PLUMgrid Inc.

[6] S. Dutt Sharma, “LTTng’s Trace Filtering and Beyond” , TracingSummit (LinuxCon, Seattle), 2015

[7] Yunsong Lu. “Evolving Virtual Networking with IO Visor”, Huawei Technologies Co., Ltd.

XDP with eBPF for different control functions

Layer 2
Forward
DPDK
setup

http://www.megaprint.com/

