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Abstract—The analysis of information rich signals is at the
core of autonomy. In airborne devices such as Unmanned Aerial
Vehicles (UAV), the hardware limitations imposed by the weight
constraints make the continuous execution of these algorithms
challenging. Edge computing can mitigate such limitations and
boost the system and mission performance of the UAVs. However,
due to the UAVs motion characteristics and complex dynamics of
urban environments, remote processing-control loops can quickly
degrade. This paper presents Hydra, a framework for the dy-
namic selection of communication/computation resources in this
challenging environment. A full — open-source — implementation
of Hydra is discussed and tested via real-world experiments.

Index Terms—Edge Computing, Urban Internet of Things,
Unmanned Aerial Vehicles, Autonomous Systems.

1. INTRODUCTION

The ability to observe and analyze the surrounding environ-
ment to inform decision making is the key to autonomy. In
physical systems, state information is extracted by acquiring
and processing endogenous and exogenous signals in real-
time. Despite the important advances both in algorithms and
embedded platforms of the recent years, the execution of
sensing-processing-control pipelines in lightweight airborne
platforms such as commercial Unmanned Aerial Vehicles
(UAV) is a non-trivial problem. Rather intuitively, there exists
an inherent tradeoff between three key metrics: accuracy,
decision delay, and energy consumption. Improving accuracy
of analysis often requires increasing complexity, which comes
at the price of a larger execution time, and thus decision delay,
or a larger weight and energy consumption.

Herein we focus on video analysis, and specifically on
object detection, an important component of most advanced
autonomous systems. Modern object detection algorithms take
the form of Deep Neural Networks (DNN). The most perform-
ing DNNSs are extremely complex, and their execution requires
powerful computing platforms. Two key recent advancements
make object detection possible in constrained mobile devices:

e The development of techniques such as distillation, pruning
and quantization led to the construction of effective simplified
DNN models with a significantly reduced complexity com-
pared to the full models.

e The development of powerful embedded computers
equipped with accelerators and GPUs.

Intuitively, despite the clever optimized design of simplified
models, aggressive complexity reduction results in a perceiv-
able degradation of accuracy. We remark that lower complex-
ity also means a shorter execution time, that is, a smaller time
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Figure 1: Edge computing scenario considered in this paper:
UAVs offload analysis modules to ground edge servers. The
architecture we developed enables the seamless distribution of
modules across devices, as well as to re-route data analysis in
real-time to improve performance.

between information acquisition and control — here referred
to as capture-to-control time — a critical parameter for an ef-
fective control. The modern GPU-equipped embedded boards
mentioned above allow fast execution of fairly complex DNN
models. However, the use of GPUs to speed up execution
significantly increases energy consumption, another crucial
metric, especially when considering airborne systems.

Edge computing [1]-[3], a paradigm where compute-
capable devices connected to the network edge take over
the computation tasks of mobile devices, can mitigate the
issue described above. The mobile devices, in the scenario at
hand the UAVs, are alleviated from the computation burden
of analysis, thus removing that component from the overall
energy consumption, and possibly speeding up execution [4].
However, offloading computation tasks to an edge server intro-
duces significant uncertainty [5], mainly due to the volatility of
the wireless link connecting the UAV to the server. Intuitively,
while the additional uncertainty is often not a prominent
factor in many mobile applications, using edge computing
to support UAVs autonomous operations necessitates meeting
hard constraints on the capture-to-control time on a continuous
flow of tasks.

Most recent contributions on edge computing for UAVs
focus on planning aspects, and mostly from an purely abstract



perspective [4,6]—[8] or center their attention on UAV-assisted
edge computing and cloudlets [9]-[13]. This paper seeks
insights on edge computing for UAVs from a real-world
deployment and real-world testing, especially to characterize
and counteract temporal variations in capture-to-control time
shaped by variations in the channel conditions, including gain
and congestion level. Specifically, we make the following
contributions:

(i) We develop an experimental platform realizing an infras-
tructure assisted UAV system. We focus on navigation tasks
based on object detection via DNN models, and equip the
UAV with one of the most powerful embedded computers for
machine learning to enable a fair comparison with offloading
to edge servers.

(ii) We develop Hydra [14], a middleware architecture en-
abling the adaptive distribution of computation tasks within
infrastructure assisted UAV systems. The modular architecture
grants significant flexibility in deploying sensing, analysis, and
control pipelines, and includes a logic to dynamically activate-
deactivate pipelines in response to changes in the state of their
components or environment.

(iii) We test the architecture to illustrate its performance
against variations of channel gain and contention/interference
from other mobile devices.

Our experimental results indicate that offloading complex
analysis tasks to edge servers grants a significant reduction
in the overall energy intake of operating the UAV, thus
prolonging mission lifetime. The proposed Hydra architecture
is shown to provide reliable control against fluctuations of the
capture-to-control time at different temporal scales based on
a tunable tradeoff between energy and delay performance.

The rest of the paper is organized as follows. Section II in-
troduces the experimental platform and provides a preliminary
discussion of the problem at hand. In Section III, we present
and discuss the architecture and logics of Hydra. Section IV
presents and discusses the experimental results. Section V
concludes the paper.

II. PRELIMINARY DISCUSSION

First, we describe the task and experimental platform, and
make some preliminary considerations on metrics of interest.

Computation Task - We consider the sensing-analysis-control
pipeline illustrated in Fig. 2: the onboard camera acquires
images that are analyzed using an object detection algorithm,
whose output is a series of labeled bounding boxes. The
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Figure 2: Sensing, analysis and control pipeline where object
detection performed on images acquired by the UAV is used
to control navigation.
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control module selects a bounding box with a predefined label,
and produces steering commands. The objective of steering is
to center the bounding box with respect of the vision range
of the UAV and match it to a predefined size. Note that our
objective is to analyze communication-computation aspects of
this class of problems, so we focus on the accuracy, delay and
energy consumption associated with the pipeline, rather than
on the specific output control.

We use ssdlite mobilenet v2 [15] trained on the Coco
dataset [16] and floating Point 32 bits precision for object
detection, a highly optimized model designed for mobile
devices. Performance in terms of accuracy is expressed in
terms of mean Average Precision (mAP), which measures a
combination of precision, recall and bounding box intersection
with ground truth. The model we use achieves a mAP equal to
22 [17], compared to the 37 — 43 of full sized models which
are out of reach of most embedded computers.

Experimental Platform - Experiments are performed using
a 3DR solo quadcopter customized to mount on an attached
plate an additional embedded computer and battery, a GoPro
Hero 4 camera, and a Magewell HDMI to USB converter.
Specifically, we use the Nvidia Jetson Nano with 4GB RAM,
Quad-core ARM Cortex-AS57 MPCore processor and 128-core
Nvidia Maxwell GPU. We use as edge servers Nvidia Jetson
TX2 boards with 8 GB RAM, hex-core ARMv8 64-bit CPU
and an integrated 256-core Nvidia Pascal GPU.

The UAV connects to the edge servers using WiFi commu-
nications, and specifically IEEE 802.11n, which offers higher
data rates (upto 130 Mbps application throughput) compared
to IEEE 802.11 a/b/g and can operate both on 2.4 GHz and
5 GHz band. We configure the access points to operate in the
2.4 GHz band on non-overlapping channels.

Preliminary Considerations - The Nvidia Nano is a recently
released extremely powerful embedded computer, specifically
designed to provide state of the art performance in executing
machine learning algorithms. The average time to execute the
bare object detection task is 87+ 6 ms, which almost equal to
the 75 = 8 ms achieved by the Jetson TX2 board. We report
that the execution of other models, such as ssd mobilenet v1,
took almost the same time on the Nano and half of the time on
the TX2 likely due to specific architectural characteristics. We
choose v2 to benchmark our system due to its slightly higher
accuracy and to provide the most advantageous conditions
to the local analysis option. We remark that a more pow-
erful edge server would obviously advantage remote analysis
pipelines, and that any other task using the GPU at the UAV
could significantly impact the performance of local onboard
analysis loops.

However, the extreme performance of the Nano comes at
the price of a high energy consumption. Continuous local
computing requires 4 + 0.5 W (measured during flight using
the Jetson Nano utilities), which is more that 10% of the 38 W
required by the UAV to hover or navigate. This is mostly
connected to the use of the GPU, however, our extensive
testing on other embedded computers resulted in execution
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Figure 3: Temporal variation of capture-to-output delay and
distance from a reference edge server as the UAV moves away
from and toward it.
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Figure 4: Capture-to-output time as a function of the distance
between UAV and the edge server.

times above half a second.

Continuous offloading to 1 or 2 edge servers requires
2+ 0.2 W and 2.055 £ 0.1 W, respectively. Therefore,
offloading dramatically reduces energy intake, and would
prolong mission time. However, the capture-to-control time
of pipelines through available edge servers has additional
components corresponding to the transfer of the image from
the UAV to the server and of steering commands on the reverse
path. Importantly, those components are heavily influenced by
latent variables such as path loss and channel load, and present
large fluctuations at fine-time scale due to fading, as well as
channel access and transport protocols’ parameters.

Fig. 3 shows an experimental trace obtained as the UAV is
flying away from the edge server — a detailed description of
the software and experimental parameters used to obtain these
results is provided later. Micro and macro scale variations
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Figure 5: High-level schematics of the modular structure of
Hydra.

are observed on a general trend of degradation due to path
loss. Distance spikes, automatically corrected, are due to wind.
Fig. 4 reinforces the notion that distance and connection to
edge servers are a rather poor predictor of the delay, with
large variations and clustering effect.

As shown in the experimental results section, the onset of
heavy-duty data streams has a more abrupt impact on the
capture-to-delay time, whose trajectory presents sudden spikes
and a more erratic behavior.

The need for a flexible and adaptive strategy is apparent.
Importantly, the reaction of the system cannot be exclusively
driven by macro-scale parameters such as distance due to
sharp delay spikes triggered by micro-scale effects such as the
dynamics of the inner state of communication and networking
protocols. Moreover, hardly observable variables such as chan-
nel load and exogenous traffic emission have a considerable
impact on the delay and its dynamics.

III. HYDRA

Herein, we describe the structure of Hydra and its em-
bedded logics, which enables the activation/deactivation of
pipelines, both local in-device and through edge servers.

Hydra Architecture

As shown earlier, autonomy pipelines are composed of
three main logical blocks, namely sensing, data analysis and
control, which transform environmental or internal signals
into control. HYDRA allows the construction of flexible
pipelines, where the flexibility is both in where the blocks
are executed and which blocks are executed. To this aim, the
open-source architecture we developed [citation to repository
is omitted to preserve authors’ anonymity] is modular, where
the module abstraction corresponds to an encapsulation of data
transformation functions. The high level schematics of Hydra
is depicted in Fig. 5.

The core of Hydra is a reliable threading of the mod-
ules over a distributed system, where the threading itself is
controlled by a logic. Every module is characterized by a
core function, and is equipped with an input and one or
many output queues. The queues are the interfaces between a
specific module and all the other — local or remote — modules.
Thus, the flow of information, as well as the deactivation of
pipelines, is controlled by the routing strategy implemented



by the modules. For instance, the deactivation of a pipeline
will be realized by disabling an output queue, thus avoiding
the summoning of the modules following it.

Some input queues implement filtering to remove replicas
of data structures transiting the modules. In our implemen-
tation, the input queue of the actuation module at the UAV
detects and filters out replica outputs of data analysis modules
— that is, outputs corresponding to the same initial data — to
avoid the implementation of duplicate steering actions. More-
over, some queues log the activity to monitor the performance
of the associated pipelines. In our implementation, the logging
driving pipeline selection is delegated to the input queue of
the final actuation module at the UAV. The input queue of this
module will log the capture-to-control time of active pipelines
by tracking the delivery time of control outputs with respect
to the generation time of their corresponding frame. Note that
both times are generated at the same device.

A module outside those realizing the transformation of
the data implements the high-level control logic of HYDRA.
Specifically, we concentrate all intelligence in the logics
module. The module collects the logs from target input queues
and determines the routing policies of selected output queues.
In this specific implementation, the logics module collects the
temporal patterns of frame emission and output reception from
the onboard sensing and control modules, respectively. The
sequences of delays are, then, used to compute the average
driving pipeline activation/deactivation and selection.

The logics module can also control data capture parameters
to optimize the flow of information through the pipelines
and maximize performance. Herein, we set the image capture
rate to match the performance of the fastest pipeline over a
moving window. Intuitively, an exceeding capture frequency
will overload the active pipelines and create undesirable
queueing effects, which may have a substantial impact on
the capture-to-control delay. In the current implementation,
we enforce a strict queueing policy, where we store only the
most recent data structure received from the previous modules.
This simple strategy avoids delay accumulation, and results in
an “effective” capture rate where all dropped samples are not
accounted for.

Hydra Logics

Intuitively, the macro-scale parameters governing tempo-
rally local capture-to-output delays are hardly observable.
Even if some network interfaces can report the value of some
relevant variables, such as channel gain and modulation, many
others remain inaccessible unless a complex, and possibly
resource consuming, information exchange is established. The
most eminent examples include channel load and server load,
which would require a direct exchange of information with
local access points and available servers. Remarkably, even
once these macro features of the environment are known,
as shown in the previous section the capture-to-control time
still presents complex patterns inducing possibly large perfor-
mance variations.

We, then, take the simple but effective approach of using

directly observable parameters to drive the system, where
the selection process is guided by the observation of the
actual capture-to-control time offered by available — active
— pipelines. An important advantage of this strategy is that of
being completely agnostic to the technologies and protocols
used within the system, meaning that the state of all the
pipelines is represented by a homogeneous set of variables.
We remark that local computing at the UAV (local pipeline)
is an option available to the UAV possibly with a reduced
degree of uncertainty compared to offloading.

Although conceptually trivial, this approach presents an
important challenge: only the capture-to-control delays as-
sociated with the currently used pipeline are observable.
Intuitively, on the one hand, the activation of only one pipeline
does not provide any information on other available pipelines.
On the other hand, the activation of all the available pipelines
— including the local one — would maximize the information
available to the UAV, but maximizes the burden imposed to the
surrounding networks and servers, possibly decreasing global
performance. In fact, any active — non-local — pipeline uses
the channel resource to support information exchange, and the
server resource to complete the offloaded tasks.

Hydra takes this observation as a starting point to build
an adaptive, and parsimonious, strategy for the exploration-
exploitation of available resources. In Hydra, pipelines are,
thus, activated to: (i) use the corresponding resources to gen-
erate control outputs; (ii) reduce uncertainty in the minimum
capture-to-output time — that is, the first available outcome
associated with an acquired sample; and (iii) update the state
estimate of available pipelines. The key, then, is to control
the activation of pipelines when necessary to one of these
purposes, while minimizing the active time of pipelines whose
output will not be used.

In order to control the activation of the pipelines, we
define 3 operational modes, namely Performance (¢(t)=P),
Exploration (1(t)=FE), and Reliability (1(t)=R), where 1(t)
is the mode at time t. In the Performance mode, the UAV
utilizes only one, remote, pipeline, which is achieving the
smallest known capture-to-output delay. In the Exploration
mode, the UAV activates available remote pipelines to update
their known “state”, and perform an informed selection. In
Reliability, local computing is activated in addition to all the
remote pipelines to guarantee an almost constant capture-to-
control time when other options have degraded performance.
Note that variations of these modes, where only subsets of
pipelines are activated can be included in Hydra.

The selection of the mode is performed based on a recent
window of capture-to-control times. Define 7, ; as the capture-
to-control time of image n processed through the pipeline p.
At image N, the future mode and edge server selection are
determined by the functions

N
E, = E Vi M, = max T(p.j
p (p.d) P INCWe, N @)
j=N-W+1

(1)

respectively corresponding to the moving average window and
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Figure 6: Illustration of the threshold based pipeline activation
and selection strategy.

maximum of the last W images’ capture-to-control delay.

Fig. 6 illustrates the modes and the selection strategy. As-
suming pipeline p* through an edge server is being currently
used in Performance mode, the system switches to Exploration
if M, is larger than the threshold A. In this mode, if for
at least one of the pipelines M, is below A, then among
those the pipeline with the smallest E, is selected and the
system returns to Performance. In Exploration, the system
transitions to Reliability after § samples unless at least one
of the pipelines has delay below .

IV. EXPERIMENTAL RESULTS

We now presents and discuss experimental results illustrat-
ing relevant tradeoffs between accuracy and energy of avail-
able computing options. Experiments are performed placing
two edge servers at a distance of 25 m (Edge Server 1 and
2, respectively). A fixed image is used to provide a stable
performance reference in all the experiments. The image is
of size 480x640 RGB pixels and compressed using JPEG to
21 KB. The UAV is set to move for 10 minutes on the line
between the two edge servers at a speed of 1 m/s to illustrate
the impact of distance from the edge servers and guarantee
reproducible experiments across our measurement campaign.
Note that in the actual tracking application, variations in the
capture-to-control time of different strategies could result in
different motion trajectories of the UAV.

Fig. 7 depicts the average capture-to-control time and power
consumption over the experiment as a function of the threshold
A. When A is set to 0.1 s, Hydra almost exclusively chooses
local computing over remote computing options. This results
in a delay of about 0.09 s, and an energy consumption of
approximately 4 W. As )\ is increased, the system increases
the fraction of time in which local computing is deactivated
and one — or two — of the pipelines through the edge servers
is kept active. At A is set to 0.25 s, the delay increases to
approximately 0.13 s, and the energy decreases to about 2 W.
The trend is illustrated in Fig. 8, where the fraction of time in
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Figure 7: Average capture-to-control time and power con-
sumption over the experiment as a function of the threshold
A
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Figure 8: Fraction of time in which local computing is active
as a function of the threshold .

which local computing is active as a function of the threshold
A is shown.

The ability of the system to quickly adapt to delay variations
is demonstrated in Fig. 9, which shows a temporal trace of the
active pipelines. The UAV is at first connected to Edge Server
2. However, as it moves away from it, the delay degrades
and Hydra transitions to Reliability mode, activating Edge
Server 1. As the connection to Edge Server 1 is still flimsy,
both edge-based pipelines have a large delay, and after ¢
samples local computing is activated. As the link to Edge
2 improves, windows of low delay allow the deactivation
of local computing. We remark that when multiple pipelines
are active, the first received control is used. Therefore, the
smallest delay in the plot is the effective delay perceived by
the controller.

In order to further evaluate the system’s dynamics, we inject
in the channels used by Edge Server 1 and 2 traffic from
external data streams. Specifically, we create high-volume
traffic with a duty cycle of 20 s — 10 s active followed
by 10 s inactive — with an offset of 5 s between the two
channels. Thus, within one duty cycle, we have 5 s in which
both channels experience congestion, 5 s in which both are
congestion-free, and two periods of 5 s in which either one
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Figure 9: Temporal pattern of the capture-to-control time
showing the switching between modes in Hydra.
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Figure 10: Temporal pattern of the capture-to-control time
showing the switching between modes in Hydra.

of the channel is congested and the other is congestion-free.

Fig. 10 shows a temporal trace of the capture-to-control
time achieved by Hydra under these conditions. The cycles
are apparent: the system switches from one edge server to
another as the exogenous data streams are activated, and relies
on local computing when the channel to both edge servers is
congested. We note the erratic behavior of delay due to the
interactions between data flows due to channel access and
transport layer protocols.

V. CONCLUSIONS

This paper presents a testbed platform and a flexible ar-
chitecture for the distribution of computation tasks within
infrastructure assisted UAV systems. The architecture embeds
logics to dynamically activate/deactivate pipelines to acquire
information on available communication and computation
resources and select the most performing options. Our experi-
mental results show that Hydra is capable of counteracting
fast variations in the capture-to-control time, and achieve
a tunable tradeoff between energy consumption and control
performance. Future explorations will consider predictive se-

lection and the integration of macro-scale features in the
decision process.
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